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Abstract. Dynamical properties of ions are studied in SiO2 melt by using the molecular dynamics
method. The diffusion constant, ionic conductivity and velocity autocorrelation function are
calculated at various pressures and temperatures. It is found that the simulated ionic conductivities
are close to experimental values, and show an increase with temperature. Diffusion constants
become maximum around 10 GPa, in close relation with a marked shift in the coordination number
of the Si ion. The velocity autocorrelation function and its spectra are calculated by using the
memory function method. These compare well with the molecular dynamics results. Discussion
is given on the pressure dependence of dynamical quantities.

1. Introduction

Recently Tsuneykiet al have developed a two-body potential model (TTAM) by fitting the
energy surfaces of the tetrahedral SiO4 cluster, which is calculated fromab initioHartree–Fock
self-consistent field calculations [1]. This potential model in the molecular dynamics (MD)
calculation could reproduce reasonably well the cell parameters and bulk moduli of various
polymorphs of SiO2 and describe accurately the pressure-induced crystalline-to-amorphous
transition [2]. Recent lattice dynamics calculations on various polymorphs of SiO2 have also
indicated that the results based on this potential are in good agreement with the observed
Raman and IR spectroscopic data [3]. In addition, the structure and properties of SiO2 glass
have been studied successfully by using this potential.

The molecular dynamics (MD) method is very useful to directly interpret dynamic
processes for simple liquids. Several authors have applied this method to investigate the
structural and dynamical properties of silicate liquid and glass [4]. Their results indicate that
changes of bond-length and bond-angle responding to pressure and temperature variations
compare well with experimental and theoretical studies, and they predict the second-order
thermodynamics properties (Cv, α, β) of the system [5].

In this paper we make a detailed study of the ionic motions in SiO2 melt. Adopting the
TTAM model potential, we perform the molecular dynamics simulation to obtain diffusion
constants, ionic conductivity and velocity autocorrelation functions at pressure up to 40 GPa
and temperature from 2000 to 4500 K. An anomalous pressure dependence of the diffusion
constants is discussed in relation to a change of the coordination number of the Si ion.
The pressure dependence of the velocity autocorrelation functions (VAFs) is investigated
systematically by the memory function method. Characteristic frequencies are calculated
by using the MD result of partial correlation functions, and a simplified time dependence is
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assumed for the memory function. The pressure dependence is discussed by comparing the
calculated VAF with the MD result.

2. Calculation

2.1. Details of the molecular dynamics simulation

The TTAM model potential adopted in our simulation takes the form [2]

φij (r) = qiqj /rij + f0(bi + bj ) exp[(ai + aj − rij )/(bi + bj )] − Cij/r6
ij (1)

as the interaction energy between two ions of thei andj species, withi, j = 1 or 2 for O or
Si ion, respectively. It consists both of the long-range Coulomb and the short-range repulsive
interaction. In the above equationr is the distance between the two ions,qi (qj ) is the electric
charge of the ion of thei (j) species, and the parameters involved in equation (1) are listed in
table 1.

Table 1. Potential parameters for the MD run [2].

q/e a (Å) b (Å) (kcal Å6 mol−1)

O −1.2 2.05 0.176 COO = 4956
Si 2.4 0.86 0.033 COSi = 1633

The molecular dynamics simulation was performed on a system of 324 ions (216 O and
108 Si), and the initial ionic position was chosen randomly in a cubic box. We have adopted
the periodic truncated octahedral (PTO) and the Ewald method for the summation of the
electrostatic interaction, with the time step1t = 0.001 ps. The temperature is controlled to
5000 K for an initial 2000 steps, and after that it is reduced to what we needed (2000 K). In
the constant pressure simulation, we decrease the relaxation time: the initial approach to the
corrected volume for the required pressure can be sped up. The mean square displacement, the
correlation function and a histogram of the coordination number of silicon are obtained by this
procedure, but the volume fluctuations affect the calculation of the correlation function in the
constant pressure simulation. To obtain sufficient accuracy, we first use the constant pressure
simulation to measure the volume, and then measure the correlation function in a constant
volume run. All simulations are performed on a DEC-500au workstation.

2.2. Transport coefficients and velocity autocorrelation function

The static conductivity can be obtained from the changes of mean squared dipole moment due
to the displacement of ions. It is defined by [6]

〈1M(t)2〉 =
〈∣∣∣∣∑

i,k

(qi1r
+
i (t)− qk1r−k (t))

∣∣∣∣2〉 (2)

where1r+
i (t) = r+

i (t) − r+
i (0) is the displacement of the ion during the time intervalt , and

the angular bracket stands for the equilibrium ensemble average. The static conductivityσ(0)
can be evaluated from the slope of the linear part of〈1M(t)2〉 in a long time run as follows

σ(0) = lim
t→∞

1

6kBT V0

〈1M(t)2〉
t

(3)

whereV0 andT are the volume and the temperature of the system, respectively, andkB is the
Boltzmann constant.
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The velocity autocorrelation functionCj(t) for thej species is defined by [7]

Cj(t) = 〈vj (t)vj (0)〉/〈vj (0)2〉. (4)

It is normalized att = 0 orCj(0) = 1 by definition, andCj(−t) = Cj(t). The spectrum of
Cj(t) is obtained by the Fourier transformation

Cj(ω) = (1/2π)
∫ ∞
∞

dt exp(iωt)Cj (t) (5)

which is non-negative according to the Wiener–Khinchin theorem [8]. For simplicity we
denote the Fourier transformation of the functionCj(t) asCj(ω), and the similar notation
Cj(z) is used below for its Laplace transformation. The memory function method [9] enables
us to describeCj(z) in terms of the Laplace transformation of a memory functionMj(t) as

Cj(z) =
∫ ∞

0
dt exp(−zt)Cj (t) = 1/[z +Mj(z)]. (6)

The spectrumCj(ω) is related to the real part ofCj(z = iω) as

Cj(ω) = (1/2π)Re [Cj(z = iω)]. (7)

Using equations (6) and (7),Cj(t) can be obtainedvia the inverse Fourier transformation of
Cj(ω) when the memory function is specified. It is useful to assume the following form for
Mj(t)

Mj (t) = ω2
j1 exp(−t/τ1) + ω2

j2 exp(−t/τ2) +At2 exp(−t/τ3) (8)

in which, τ1, τ2, τ3 andA are constants to be determined [10]. The quantitiesωj1 andωj2

represent the contribution of cations and anions to the Einstein frequencyωj respectively [7].
These are given by

ω2
j = (1/mj )〈(∂/∂rj ∂/∂rj )V 〉 = ω2

j1 + ω2
j2 (9)

ω2
jk = (nk/3mj)

∫
dr gjk(r){d2νjk(r)/dr

2 + (2/r) dνjk(r)/dr}. (10)

In equation (9)V is the total interaction energy of the system. In equation (10)gjk(r) is the
partial correlation function between ions of thej andk species, andnk is the number density
of speciesk. In equation (8) the first two terms assume the distinct difference the contributions
of Si and O ions in the relaxation of effective fields at short times. The third term represents
enhanced correlation at intermediate times, and this phenomenological description is assumed
for the present purpose. IfA = 0,Cj(t) reduce to a generalized version [11] of the result due
to Berneet al under a certain condition [7, 10, 12], the self-diffusion constantDj is related to
Cj(t) orCj(ω) through

Dj = (kBT /mj )
∫ ∞

0
dt Cj (t) = (kBT π/mj )Cj (ω = 0). (11)

It follows from equations (6), (7) and (11),

ω2
j1τ1 + ω2

j2τ2 + 2Aτ 3
3 = kBT /mjDj . (12)

This is the condition for the parameters inMj(t) when the right-hand side is given.
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3. Results and discussion

The specific electrical conductivity calculated by means of MD simulation at different
temperatures is shown in figure 1. For SiO2 melt, there is partial covalent interaction between
Si and O ion, and therefore the specific electrical conductivity is low (∼10−5 �−1 cm−1) near
the melting point. Figure 1 presents the specific electrical conductivity, both experimental
data [13] and MD simulation results. One can see that simulated ionic conductivity is close
to the experimental value and shows an increase with increasing temperature. We include this
comparison with experiment for specific electrical conductivity as evidence that this potential
model is adequate to describe the main features of transport in SiO2 melt.

Figure 1. Comparison of specific electrical con-
ductivity from MD simulation and experimental
data at 0.1 MPa.

Figure 2. The self-diffusion coefficient at
various compression ratios. The unit ofD is
10−6 cm2 s−1.

The self-diffusion coefficients are estimated by the mean square displacement which runs
over 20 ps. Figure 2 shows the results of the self-diffusion coefficient as a function of the
compression ratio (Vp/V0) at constant temperature (2000 K), in whichVp is the volume at
pressureP (P = 0, 10, 20, 30, 40 GPa). We note that the diffusion constants of Si and
O atVp/V0 = 1.0 reasonably agree with experimental results of(CaO)1−x–(SiO2)x melts at
1800 K. (The mole fractionx = 0.634,DSi = 0.34×10−6 cm2 s−1,D0 = 0.35×10−6 cm2 s−1

[14].) The results of molecular dynamics simulation show that the diffusivity of Si and O ions
increases with increasing pressure from 0 to 10 GPa, and then decreases beyond it. This is
consistent with the negative pressure dependence of the viscosity in silicate liquid [15], and the
pressure enhancement of the ion mobility in liquid silicates [16]. As pressure increases, the
coordination number certainly changes. The distribution ofNSi−O (the coordination number
of O ions around the Si ion) is calculated for 4000 configurations by taking the first minimum in
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Figure 3. Pressure dependence ofNSi−O
distribution.

Figure 4. Velocity autocorrelation function for Si ion
at Vp/V0 = 1.0. Curve 1 shows the results obtained
withoutA, and curve 2 withA in equation (8). The MD
results are represented by open circles. The horizontal
axis ist in the unit of 10−13 s.

Figure 5. Velocity autocorrelation function for Si ion.
The five curves show the MD results at compression ratio
Vp/V0 = 1.0 (curve 1), 0.823 (curve 2), 0.764 (curve 2),
0.715 (curve 4), 0.684 (curve 5).

the radial distribution functiongSi−O(r) as a cut-off distance for the first coordination sphere.
Figure 3 shows the result forNSi−O (= 3, 4, 5, 6) as a function of pressure. The percentage
of fivefold and sixfold coordinated Si increases rapidly with pressure from 10 to 40 GPa, but
the fourfold coordinated Si decreases. When the pressure is 40 GPa, the fivefold coordinated
Si becomes dominant in SiO2 melt. These results are consistent with the NMR study on
Na2Si4O9 glass under high pressure, indicating that there are large amounts of fivefold and
sixfold coordinated Si species [17].

In the range of the compression ratioVp/V0 from 1.0 to 0.823, the self-diffusion
coefficients increase because the network structure in the SiO2 melt is only partly broken down.
Above 10 GPa, the self-diffusion coefficients decrease because the Si ion has become fivefold
and sixfold coordinated and it is more tightly bound within its primary coordination shell.
Recently Angellet al have suggested that the pressure enhancement of ion mobility in liquid
silicates is correlated with a prevalence of fivefold coordination of silicon ions [6]. Figures 2
and 3 indicate that the anomalous pressure dependence of diffusion coefficient for SiO2 melt
involves not only the percentage changes of five-coordinated Si, but also three-coordinated Si.

The molecular dynamics simulation result of the velocity autocorrelation functionCSi(t),
at Vp/V0 = 1.00, is shown in figure 4 as the open circles. The curve 1 shows the result of
adopting equation (8) without the third term (i.e.,A = 0). SinceωSiSi is very small compared
with ωSiO , the value ofτ2 turns out to be very large, and as a consequence a negative tail
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appears. When the third term (A 6= 0) is introduced in equation (8), the agreement with the
MD result is improved, as shown by curve 2. It is the best obtained by following the standard
procedure; we have first made a rough estimate of the parameter with some conditions with
which the first minimum is reasonably reproduced. After that we have minimized the standard
deviation for small variation around it, taking account of equation (12) with the MD result of
the self- diffusion coefficientDj as the condition for the parameters.

Figure 5 shows five curves ofCSi(t) as a function of time at various compression ratios.
The initial decay of velocity autocorrelation function is almost determined by the frequency
ωSi−O , but the subsequent behaviour is governed by the time-dependenceAt2 exp(−t/τ3)

term in the memory function. The negative region in the velocity autocorrelation function
for dense liquid is understood as rebounding of particles’ motion from the cage formed by
surrounding particles. When a tagged particle is given an initial momentum, it comes into
collision frequently with surrounding particles forming the cage, which leads to a fast decay
and a long-range oscillation in time due to the so-called backflow. Figure 6(a) displays the
MSi(t) curve as a function of time, and figure 6(b) shows the contribution of the first term,
ω2
SiO exp(−t/τ1), and the third term,At2 exp(−t/τ3), toMSi(t) atVp/V0 = 1.0. We observe

fast decay from the first term and a broad bump from the third term at intermediate time.

Figure 6. (a) Time dependence of the memory functionMSi(t) given by equation (8). The unit
of t is 10−13 s. (b) Time dependence of the first term (curve 1) and third term (curve 2) ofMSi(t)

with the same units as in (a).

Table 2. Numerical values for the parameters in equation (8) for Si ions at various compression
ratios. The unit ofτ1 andτ3 is 10−13 s, the unit ofτ2 is 10−4 s, that ofωSiO is 1013 s−1, ωSiSi is
109 s−1. A is in the unit (1013 s−1)4.

Vp/V0 τ1 τ2 τ3 A ωSiO ωSiSi

1.000 0.0950 9.191 098 0.9000 22.500 12.5106 1.3808
0.823 0.0950 1.617 224 0.8000 20.000 12.0537 2.5661
0.764 0.0950 2.232 555 0.8500 20.500 11.8326 2.5016
0.715 0.0900 1.969 449 0.7500 20.500 11.6692 3.0263
0.684 0.0850 1.831 773 0.5000 31.500 11.6412 3.4821

The spectrumC(ω) is obtained by the Fourier transformation ofC(t) and is shown in
figure 7. There is a high-frequency peak which comes from the contribution ofωSi−O , and a
low-frequency peak from the contribution of the third term. Figure 8 gives the characteristic
frequencies in equation (10), evaluated by usingvij (r) andgij (r) obtained by the molecular
dynamics calculation.ωSiSi is roughly three orders of magnitude smaller thanωSiO (see
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Figure 7. Spectrum of velocity autocorrelation
function for Si ion at compression ratioVp/V0 = 1.00
(curve 1), 0.823 (curve 2), 0.764 (curve 3), 0.715
(curve 4), 0.684 (curve 5). The unit ofω is 1013 s.

Figure 8. Compression ratio dependence
of characteristic frequencies defined by
equation (10):ωSiO (open circles),ωOSi
(down triangle),ωOO (up triangle),ωSiSi
(square). The unit ofωSiO , ωOSi , ωOO is
1013 s−1, but theωSiSi is 109 s−1.

table 2). This is because the value ofbSiSi is very small and thus the repulsion between Si ions
becomes strong. In figure 7 the spectrum tends to increase with pressure in the frequency region
between the two broad peaks. If the network with the dominant fourfold Si ion partially breaks
down, potential barriers around ions would significantly fluctuate in height and width. This
results in broadening of characteristic frequencies for local oscillation of ions. Around 40 GPa
the variation of the local field would decrease owing to tight binding characterized by the equal
weight of three-, four-, fivefold Si ion. Although the characteristic frequencyωjk shown in
figure 8 is an averaged quantity, and it does not necessarily directly represent local variations,
our results, which use thisωjk in the amplitude and adopt the simplified form of the time
dependence for the memory function, are consistent with the above interpretation. It would
be necessary further to investigate local potential fields on ions, and also in this connection
to make clear which structures (three-coordinated Si or five-coordinated Si) are responsible
for the aforementioned anomalous pressure dependence of diffusion constants. Table 2 shows
numerical values of parameters in equation (8) adopted for the velocity autocorrelation function
in figure 5. It is found thatτ2 is much larger thanτ1, which reflects the fact thatωSiSi is very
much smaller thanωSiO . As a consequence, in the memory function given by equation (8) for
the velocity autocorrelation function, the first term,ω2

SiO exp(−t/τ1), becomes dominant at
short times and the third term becomes effective at intermediate times, as seen in figure 6(b).

4. Conclusion

We have investigated the self-diffusion constants and the velocity autocorrelation function
to understand the ionic correlation in SiO2 melt. The TTAM model potential is adopted for
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the molecular dynamics simulation, to calculate these quantities at pressure up to 40 GPa
and temperature ranging from 2000 to 4500 K. It is found in figure 2 that the self-diffusion
constants take a maximum value around 10 GPa, and this behaviour is intimately related to the
marked increase of the threefold and fivefold Si ion as shown in figure 3. We have evaluated
the characteristic frequencies of the velocity autocorrelation function consistently by using
the TTAM potential and the simulated results of the partial correlation function resulting
from it, and described the time dependence in terms of the simplified memory function given
in equation (8). It is found that the calculated velocity autocorrelation function is in good
agreement with the molecular dynamics results, and the pressure dependence of its spectrum
is roughly consistent with the structural change mentioned above.

Our results of the ionic conductivity and diffusion constants reasonably agree with
experiments atVp/V0 = 1.0. This means that the TTAM potential is adequate at the starting
point (Vp/V0 = 1.0). We have adopted the same potential for the subsequent molecular
dynamics simulation at non-zero pressure. At low pressure the local configuration around the
ion would be sensitive to details of the potential. At pressure as high as 40 GPa, ions become
tightly bound, as shown in the existence of three-, five- and sixfold Si ion with nearly equal
weight. This situation at high pressure would not depend on details of the potential. The initial
increase of calculated diffusion constants is supported by experiments. We therefore believe
that if another potential is used, qualitative features of the pressure dependence would remain
almost unchanged, even though quantitative changes would be substantial.

It seems to us that in order to reproduce detailed features of the velocity autocorrelation
function such as the small oscillation in figure 5, it is necessary to improve the memory function.
In addition, more detailed study by means of simulation is required to clarify the anomalous
pressure dependence of the diffusion constants.
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